An asterisk indicates the position of the target promoter fragmen

An asterisk indicates the position of the target promoter fragments. “”bla”" indicates the bla promoter (positive control), the other fragments of plasmid DNA correspond to negative controls. The specific binding of H-NS is observed when bands corresponding to bla and target promoter disappear with increasing concentration of H-NS, the H-NS-DNA complex being difficult to visualize under these conditions. Discussion H-NS regulates directly and indirectly the RcsB-P/GadE complex, that is located at the centre of the acid resistance network as well as control of motility (Figure 3). Furthermore, H-NS modulates the level of several regulatory proteins, unrelated to this complex (e.g. CadC,

AdiY, HdfR) (Table 4 and Figure 2) [3]. Among them, only {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| HdfR was previously known as a H-NS target [3]. The present study revealed that, in addition to its role in motility control, HdfR regulates the glutamate-dependent acid resistance pathway, directly inducing

gltBD and indirectly controlling aslB (Table 4 and Figure 1, 3). All the results presented in this work were integrated together with previously published data, to selleck screening library propose a model of the complex H-NS-dependent regulatory network governing motility and acid stress resistance processes in E. coli (Figure 3). The new characterized H-NS targets, CadC and AdiY, have no effect on motility (data not shown) and are involved in the H-NS-dependent regulation of lysine and arginine-dependent response to acid stress, respectively (Table 3). Furthermore, we found that AdiY is also involved in glutamate-dependent FG-4592 molecular weight response to acid stress (Table 2). It directly or indirectly regulates several genes specific to this response including aslB, gltBD, gadA, gadBC, slp-dctR or having more global role in acid stress resistance such as hdeAB and hdeD (Table 4). Interestingly, we demonstrated that H-NS has a direct control effect on the cadBA promoter (Figure ZD1839 cost 2), in accordance with the previous suggestion of a competition between

the CadC activator and H-NS for binding to this promoter region [23]. In addition to its role in the repression of major regulators at high levels of the hierarchy, we have shown that H-NS is able to directly affect acid stress circuits repressing the transcription of several structural genes (e.g. yhiM, slp, dctR) (Figure 2). This is in agreement with the proposed competition between activation by specific regulators and repression by H-NS, in several bacterial systems [24, 25]. The results of present study point out the essential role for several intermediary players within H-NS-dependent regulatory network and suggest an accessory role for other regulators in acid stress response. Indeed, the EvgA-YdeO regulatory pathway plays a secondary modulator role in the glutamate-dependent acid stress response, in comparison to H-NS. In the same means, AslB and YdeP, two anaerobic enzymes, may have a redundant function in this stress response.

Comments are closed.