Sci Fund (201003387), GDNSF (S2011040004850), and partially by S

Sci. Fund (201003387), GDNSF (S2011040004850), and partially by Shanghai Supercomputer Center. References 1. Evans MH, Joannopoulos JD, Pantelides ST: Electronic and mechanical properties of planar and tubular boron structures. Phys Rev B 2005, 72:045434–045439.CrossRef 2. Kunstmann J, Quandt A: Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties. Phys Rev B 2006, 74:035413–035426.CrossRef 3. Lau KC, Pati R, Pandey R, Pineda AC: First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem Phys Lett 2006, 418:549–554.CrossRef 4. Cabria I, López MJ, Alonso JA: Density functional calculations

of hydrogen adsorption on boron nanotubes and boron sheets. Nanotechnology this website 2006, 17:778–786.CrossRef 5. Szwacki NG, Sadrzadeh A, Yakobson BI: B80

fullerene: an ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 2007, 98:166804–166807.CrossRef 6. Tang H, Ismail-Beigi S: Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 2007, 99:115501–115504.CrossRef 7. Yang X, Ding Y, Ni J: Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B 2008, 77:041402–041405. R. 8. Singh AK, Sadrzadeh A, Yakobson BI: Probing properties of boron α-tubes by ab initio calculations. Nano Lett 2008, 8:1314–1317.CrossRef 9. Prasad DLVK, Jemmis ED: Stuffing improves the stability of fullerenelike boron clusters. Phys Rev Lett 2008, 100:165504–165507.CrossRef 10. Szwacki NG: Boron fullerenes: a first-principles study. Nanoscale eFT-508 Res Lett 2008, 3:49–54.CrossRef 11. Lau KC, Orlando R, Pandey R: First-principles study of crystalline bundles of single-walled boron nanotubes with small diameter. J Phys Condens Matter 2008, 20:1–10. 125202CrossRef 12. Yan QB, Zheng QR, Su G: Face-centered-cubic B80 metal: density functional theory calculations. Phys Rev B 2008, 77:224106–224110.CrossRef 13. Zope RR, Baruah T, Lau KC, Liu AY, Pederdon MR, Dunlap BI: Boron fullerenes: from B80 to hole doped boron sheets. Phys Rev B 2009,

79:161403R.CrossRef 14. Otten BCKDHB CJ, Lourie OR, Yu MF, Cowley JM, Dyer MJ, Ruoff RS, Buhro WE: Crystalline boron nanowires. J Am Chem Soc 2002, 124:4564–4565.CrossRef 15. Wang YQ, Duan XF, Cao LM, Wang WK: One-dimensional growth mechanism of amorphous boron nanowires. Chem Phys Lett 2002, 359:273–277.CrossRef 16. Wang DW, Lu JG, Otten CJ, Buhro WE: Electrical transport in boron nanowires. Appl Phys Lett 2003, 83:5280–5282.CrossRef 17. Yun SH, Dibos A, Wu JZ, Kim DK: Effect of quench on crystallinity and GSK2245840 ic50 alignment of boron nanowires. Appl Phys Lett 2004, 84:2892–2894.CrossRef 18. Gindulyte A, Lipscomb WN, Massa L: Proposed boron nanotubes. Inorg Chem 1998, 37:6544–6545.CrossRef 19. Boustani I, Quandt A, Hernandez E, Rubio A: New boron based nanostructured materials.

Comments are closed.