smegmatis cell wall proteome

smegmatis cell wall proteome. see more Other studies have previously used this approach to resolve mycobacterial

membrane proteins [9–12]. The goal of this study was to improve the identification of mybacterial cell wall and cell wall-associated proteins in Mycobacteria by analyzing the model organism Mycobacterium smegmatis. Results & discussion High-throughput identification of cell wall proteins with SDS-PAGE + LC-MS/MS Traditionally, proteomic analyses of cell wall samples involve the https://www.selleckchem.com/products/LY2603618-IC-83.html resolution of proteins using 2-DE followed by the identification of resolved proteins by MS [13]. However, a big proportion of cell wall proteins are membrane bound, and it is generally agreed that membrane proteins are highly underrepresented in 2 dimensional electrophoresis (2-DE) [14].

In view of the poor performance of the 2-DE technique for membrane proteins and because the electrophoretic resolution of 2-DE by contaminating mycolates and other cell wall components [15], an alternative approach for the analysis of the cell wall proteome, shotgun LC-MS/MS method, was conducted. Cell wall proteins were first separated by SDS-PAGE according to their molecular weight followed by in-gel digested with trypsin into complex peptide mixture, and then the mixture was analyzed directly by LC-MS/MS. Subsequently, protein identifications were determined by database searching selleck compound software [16]. Our experiments led to the identification of a much wider range of proteins in cell wall fraction than those identified using the conventional 2-DE based method and can therefore be used as a comprehensive reference for Mycobacterium spp. cell wall proteomic PTK6 studies. To avoid false-positive hits, we applied strict criteria for peptide and proteins identification. Additional file 1 shows the identified proteins in detail. In total, 390 unique proteins were identified, which

included 79 proteins previously annotated as hypothetical or conserved hypothetical, which is the largest number of cell wall and cell wall-associated proteins for mycobacteria reported in one study. Hydrophobicity analysis of the identified cell wall proteins Potential cell wall associated proteins with 1-15 TMHs (Transmembrane helix) were assigned using TMHMM 2.0 program against the Mycobacterial smegmatis MC2 155 protein sequence database (excluding the possible signal sequences). In our study, 64 proteins (16.41%) were identified to have at least 1 transmembrane domain. The predicted TMH numbers of these proteins ranged from 1 to 15, and 34 contained at least two TMHs. The profile of TMH in cell wall proteins of M. smegmatis is very similar to previous reports about TMH in M. tuberculosis cell wall proteome [17]. The distribution of these TMHs is shown in Figure 1.

Comments are closed.