These, hydrophobic properties provide interesting possibilities when purification of macromolecules is concerned. In aqueous micellar two-phase systems, based on surfactants, the water soluble hydrophobins are concentrated inside micellar structures and, thus, distributed to defined aqueous phases. This, one-step purification is attractive particularly when large-scale production of recombinant proteins is concerned. In the present study the hydrophobin HFBI of Trichoderma reesei was expressed as an N-terminal fusion with chicken avidin in baculovirus infected insect cells. The intracellular distribution of the recombinant fusion construct was
analyzed by confocal microscopy and the protein subsequently Dibutyryl-cAMP in vivo purified from cytoplasmic extracts in an aqueous micellar two-phase system by using a non-ionic surfactant. The results show that hydrophobin and an avidin fusion LY2874455 in vivo thereof were efficiently expressed in insect
cells and that these hydrophobic proteins could be efficiently purified from these cells in one-step by adopting an aqueous micellar two-phase system. (C) 2008 Elsevier Inc. All rights reserved.”
“Cellular microarrays are powerful experimental tools for high-throughput screening of large numbers of test samples. Miniaturization increases assay throughput while reducing reagent consumption and the number of cells required, making these systems attractive for a wide range of assays in drug discovery, toxicology, stem cell research and potentially therapy. Here, we provide an overview of the emerging technologies that can be used to generate cellular microarrays, to and we highlight recent significant advances in the field. This emerging and multidisciplinary approach offers new opportunities for the design and control of stem cells in tissue engineering and cellular therapies and promises to expedite drug discovery in the biotechnology and pharmaceutical industries.”
“An optimal measurement of glomerular filtration rate (GFR) should minimize the number of blood draws, and reduce procedural invasiveness and the burden to study personnel and cost, without sacrificing accuracy. Equations have been proposed
to calculate GFR from the slow compartment separately for adults and children. To develop a universal equation, we used 1347 GFR measurements from two diverse groups consisting of 527 men in the Multicenter AIDS Cohort Study and 514 children in the Chronic Kidney Disease in Children cohort. Both studies used nearly identical two-compartment (fast and slow) protocols to measure GFR. To estimate the fast component from markers of body size and of the slow component, we used standard linear regression methods with the log-transformed fast area as the dependent variable. The fast area could be accurately estimated from body surface area by a simple parameter (6.4/body surface area) with no residual dependence on the slow area or other markers of body size.