Using HPLC and LC-MS, we demonstrated that strain 1-7 degraded PN

Using HPLC and LC-MS, we demonstrated that strain 1-7 degraded PNP through two different pathways, the HQ pathway and the BT pathway. A gene cluster pdcABCDEFG involved in PNP degradation was identified in Pseudomonas sp.1-7. Genes pdcABDEFG were involved in the HQ pathway, and genes pdcCG were involved in the BT pathway. The BT pathway also needs a two-component

PNP Evofosfamide in vivo monooxygenase (Figure 1) to catalyze PNP to 4-NC and BT [5]; however, we did not find the relevant PNP monooxygenase in the gene cluster. We speculate that the monooxygenase PdcA in the HQ pathway may have two functions, catalyzing PNP to both BQ selleck inhibitor and 4-NC. This is supported by recent reports indicating that the HQ pathway monooxygenase has the ability to catalyze 4-NC to BT, normally thought to be the work of the BT pathway monooxygenase [11]. This suggests that the HQ pathway

monooxygenase could be substituted for the BT pathway monooxygenase in the process of PNP degradation. In future studies, we will identify whether there are BT pathway-specific PNP monooxygenase genes, or whether the HQ pathway monooxygenase is a bi-functional enzyme in strain 1-7. We also identified three enzymes (PdcDE, PdcF and PdcG) in the HQ pathway. PdcDE was a two-component dioxygenase and catalyzed HQ to 4-HS. PdcG was a SC79 datasheet 4-HS dehydrogenase that catalyzed 4-HS to MA. PdcF was a MA reductase which transformed MA to β-ketoadipate. All three enzymes performed optimally at temperatures of 40-50°C, and at nearly neutral pH (pH 6.0-8.0). Regarding stability, only PdcG has a better thermal stability at 60°C (65% retention of activity after 20 min exposure) than the other two enzymes (10% to 35% retention). All of the enzymes had better alkali stability at

pH 10.0 (58% to Fossariinae 75% retention of activity after 30 min exposure) than acid stability at pH 3.0 (18% to 20% retention). The HQ dioxygenase gene has been identified in other bacteria [12, 21], but little is known about the properties of its corresponding enzyme. Our research on the enzyme (PdcDE) will hopefully contribute to our understanding. Of the two, the MA reductase PdcF was the more active enzyme, with a specific activity of 446.97 Umg-1 as opposed to 13.33 Umg-1. It is also the first time that a 4-HS dehydrogenase (PdcG) has been extensively characterized. Conclusions Pseudomonas sp.1-7, with the capability of degrading MP and PNP, was isolated from MP-polluted activated sludge. The bacterium utilized two pathways for PNP degradation, the HQ pathway and the BT pathway. Three enzymes (PdcDE, PdcF and PdcG) in the HQ pathway were expressed, purified, and characterized. Our research will pave the way for a better understanding of the PNP degradation pathway in gram-negative bacteria. Acknowledgements The work was supported by the National Natural Science Foundation of China (Grant No.31170036).

Comments are closed.