, Shanghai, China). All experiments were performed with a conventional three-electrode system. A modified GCE (d = 3 mm) as the working electrode, a saturated calomel electrode (SCE) and a platinum electrode were used as reference and auxiliary electrodes, respectively. X-ray diffraction (XRD) pattern was performed on a D8 ADVANCE X-ray diffractometer (Brucker AXS, Karlsruhe, Germany). Ultraviolet and visible absorption (UV-vis) spectra were obtained on a 2550 UV-spectrophotometer (Shimadzu, Kyoto, Japan). The morphologies of the GS-PEI-Au nanocomposites and the fabrication process of the immunosensor were observed using a scanning electron microscope (SEM, S-4800, Hitachi, Tokyo, Japan).2.3. Preparation of MWCNTs NanocompositesA 0.25 wt.% chitosan solution was prepared by dissolving chitosan in 1 wt.
% acetic acid solution with magnetic stirring for about 1 h, then the pH of the solution was adjusted to pH 5.0 with a concentrated NaOH solution. MWCNTs (1 mg) was added into 0.25 wt.% chitosan solution (1 mL) and then sonicated for 2 h to afford Drug_discovery a homogeneous solution.2.4. Pretreatment of GS-PEI-Au NanocompositesA GS suspension was obtained by adding GS (3.0 mg) to distilled water (10 mL). The solution was sonicated for 1
With the rapid increase of communication demands, the spectrum layout based on the static spectrum allocation methodology has caused a shortage of spectrum resources [1]. Measurements by the Federal Communications Commission (FCC) have shown that 70% of the allocated spectrum in the US. has not been well utilized [2].
In order to improve the utilization of the finite spectrum sources, a new intelligent communication system named cognitive radio (CR) is proposed. CR, which is based on software radio, can reuse the radio spectrum that has been allocated to a primary user (PU) but is temporally unused [3]. Therefore, CR technique can improve the spectrum utilization greatly through operating on the idle channel.Energy sensing which is independent of the prior information about PU, is used by cognitive radio user (CRU) frequently because of its simple and practicable implementation [4]. However, the performance of energy sensing can be degraded in the fading or shadow environment [5]. It has been proven that cooperative spectrum sensing outperforms single-user detection, which combines the detection results of multiple users [6]. In cooperative spectrum sensing, every collaborative CRU senses spectrum independently by energy sensing, and then sends its sensing information to a fusion centre that makes a final decision on the presence of PU through combining all the received sensing information [7].