TLR4-deficient BMDM stimulated with MRP8 also showed lower M1/M2,

TLR4-deficient BMDM stimulated with MRP8 also showed lower M1/M2, suggesting that the effect of MRP8 upon M1 dominancy might be partly through TLR4. Migration assay and phalloidin Wnt antagonist staining of MΦ revealed that deletion of MRP8 resulted in less migration and stress fiber formation. Conclusion: Myeloid-lineage cell-derived MRP8 potentially contributes to glomerular injury through intraglomerular cell-cell crosstalk affecting MΦ characterization.

WEI QING-XUE WEI1, GAO LEI-PING1, WAN YI-GANG2 1Changshu Hospital of Traditional Chinese Medicine; 2Nanjing Drum Tower Hospital Introduction: Interstitial fibrosis (IF) is a vital factor leading to renal failure, which is aggravated by the imbalance between extracellular matrix (ECM) components production and degradation. Matrix metalloproteinases buy PS-341 (MMPs) play a key role in ECM degradation while TGF-beta1 is a crucial regulator of ECM

protein synthesis and degradation. Although it has been confirmed that Uremic Clearance Granules (UCG), a natunal phytomedicine, are clinically effective in improving renal failure in China, the mechanisms remain a challenge. This study aims to investigate the effects and mechanisms of UCG on IF by regulating MMPs synthesis and TGF-beta1 signaling in vivo. Methods: The rats with IF, induced by adenine and unilateral ureteral obstruction (UUO) on day 15, were randomly divided into 4 groups: the sham-operated group, the vehicle group, the UCG group, and the enalapril group. All rats were killed on day 35 after administration. The rats’ proteinuria, urinary N-acetyl-D-glucosaminidase (UNAG), blood biochemical parameters and RF morphological changes were examined. The protein expressions of ECM component such as collagen type IV (col-IV),

MMPs synthesis such as MMP-2, MMP-9, and tissue inhibitors of metalloproteinase (TIMP)-1, as well as TGF-beta1 signaling molecules including TGF-beta1, TGF-beta RI, TGF-beta RII, Smad2/3, phosphorylated-Smad2/3 (p-Smad2/3), Smad4, Smad6 and Smad7, were observed respectively. Results: Adenine PRKD3 administration and UUO induced severe renal damage, as indicated by renal dysfunction, proteinuria and the marked histopathological injury in the tubules and interstitium. This was associated with MMP-2/TIMP-1 imbalance and TGF-beta1/Smad signaling activity, as shown by up-regulation of the protein expressions of TGF-beta1, TGF-beta RI, TGF-beta RII, Smad2/3, p-Smad2/3 and Smad4, as well as down-regulation of the protein expression of Smad7. UCG treatment, however, significantly attenuated renal dysfunction and tubulointerstitial fibrosis. It regulated the protein expressions of MMP-2/TIMP-1, and suppressed the protein expressions of TGF-beta1, TGF-beta RI, p-Smad2/3 and Smad4, whereas it enhanced the protein expression of Smad7. Furthermore, the effects of UCG are stronger than those of enalapril partly.

Many genetic [3,26] and virological factors [27] have been though

Many genetic [3,26] and virological factors [27] have been thought to predispose to severe disease along with the host immune response

[27]. However, the correlates of a protective immune response have not been defined due to the inability to define DENV-serotype specific T cell responses. The lack of data regarding the constituents of a DENV-specific protective immune response has hampered the development of a safe and effective dengue vaccine. As we have identified serotype-specific and highly conserved peptides from all four DENV serotypes, these tools can be used to dissect DENV-specific immune responses in greater detail. As the peptides identified by us are serotype-specific and conserved, they can be used to determine past infecting DENV serotypes and would help us to understand the EPZ-6438 concentration dynamics of the silent DIs in the community. This will be of value to address a number of questions, such as whether the sequence of infections with DENV serotypes

and/or the timing of DIs determine severity. Such data would help us to define the correlates of a protective DV-specific immune response and help us to develop safe and effective vaccines. In summary, we have shown that DENV-4 infection is Ganetespib in vitro likely to be more common than thought previously in Sri Lanka. We have identified T cell responses to 19 regions of the four DENV serotypes, which are serotype-specific and highly conserved from dengue immune donors who have had asymptomatic/mild DI. The use of conserved serotype-specific T cell epitopes to determine past infecting DENV serotypes will be of value to determine the silent and symptomatic transmission of the DENV in the community and to identify the correlates of a DENV-specific protective immune response. Funding was

provided by the Medical Research Council (UK). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. An application has been made for protection of the intellectual property herein. Table S1. Degree of conservation of the identified peptides in the published dengue virus sequences. Degree of conservation was assessed by nearly the use of the virus variation resource on the dengue virus sequence database available at: http://www.ncbi.nlm.nih.gov/genomes/VirusVariation/Database/nph-select.cgi “
“Successful mammalian pregnancy relies upon acceptance of a semi-allogeneic fetus by the maternal immune system. Lessons learned from studies on protective immunity to microbial infections and tumours, prevention of autoimmunity, and allograft rejection have contributed to delineate the mechanisms leading to T-cell tolerance at the fetomaternal interface.

Based on these findings, the infection of MΦs would be expected t

Based on these findings, the infection of MΦs would be expected to lead to the killing of infected cells by NK cells. It has been shown that NK cells kill filovirus-infected human DCs and that lysis is directly linked to NKp30 upregulation [17]. Several

checkpoints control the balance between activating and inhibitory signals and NK-cell-mediated lysis. They include the modulation of class I MHC molecules, which may bind to KIRs and contribute to the inhibitory signal, www.selleckchem.com/products/obeticholic-acid.html and the modulation of activating receptors and associated ligands. In our model, NK cells stimulated by infected MΦs neither kill infected cells nor participate to viral clearance. This observation is consistent with the constant expression of class I MHC molecules by infected APCs [6, 8] and the absence of NK-cell-activating ligands, such as MIC A/B (data not shown). Our results show that NK cells have a greater cytotoxic potential during the infection of MΦs and that they seem to be able to kill MHC-lacking targets but buy RO4929097 we observed no lysis of LASV- or MOPV-infected APCs.

After stimulation by IL-2/PHA, NK cells did not kill infected APCs either despite an increased cytotoxic potential. This result suggests that the lack of killing of infected APCs was not due to a defect in NK-cell activation. LASV- and MOPV-infected cells rather seem to resist to NK-cell-mediated lysis and apoptosis, as reported for several other viruses [25]. This mechanism, consistent with the noncytopathic nature of Arenavirus infections, would enable the virus to persist and disseminate. There is evidence to suggest that the Z protein of LASV can dysregulate apoptosis signaling 3-mercaptopyruvate sulfurtransferase by binding to promyelocytic leukemia protein (PML), a component of PML nuclear bodies [26]. PML has been shown to play a role in apoptosis regulation via the death-receptor pathway

and to control class I MHC gene expression [27]. Thus, Arenaviruses may potentially interfere with the normal function of PML in nuclear bodies, leading to cell death resistance in infected cells, through inhibition of the apoptosis pathway and class I MHC downregulation in infected cells. We found no dramatic difference in NK-cell responses between LASV and MOPV infections, despite the striking differences in pathogenesis and APC activation induced by these two viruses. The lack of NK-cell response in the presence of LASV- or MOPV-infected DCs is probably due to the lack of DC activation induced by these two viruses [6, 8]. Indeed, the activation of NK cells seems to be correlated to the status of activation of DCs, as observed for LPS-stimulated DCs. NK-cell activation during the MOPV-infection of MΦs is consistent with only MΦs being rapidly and strongly activated by MOPV.

These epitopes were identified

These epitopes were identified selleck chemicals mostly in chronically infected individuals, who had mounted T-cell responses against them. Moreover, preliminary immunogenicity results from the first trials of the conserved vaccines show encouraging

immunogenicity. Nevertheless, as with any approach, vaccines based on the conserved regions have their theoretical caveats. First, conserved immunogens are chimeric proteins assembled from protein sub-regions and, as such, have sequence junctions where the sub-regions meet. These junctions may create novel irrelevant epitopes (not present in HIV-1), which could, for certain HLAs, be immunodominant and suppress induction of protective responses. However, based on the likelihood of creating such immunodominant interfering junctional epitopes, these will almost certainly be the exception rather than the rule. Second, CD4+ T cells, the main natural target cells for HIV-1 replication, do not have co-stimulatory molecules GSK1120212 cost on their surface and, therefore, are not potent primers of T-cell responses. Thus, in natural HIV-1 infection, many or most T-cell responses are primed either by direct infection of ‘professional’ antigen-presenting cells or through cross-priming, for instance via the uptake of HIV-1-infected apoptotic cell debris by ‘professional’ antigen-presenting cells. While

it is known that most immunodominant epitopes are expressed on HIV-1-infected cells, this has not been explored in great detail for subdominant epitopes such as those derived from the HIV-1 conserved regions. Thus, it is not guaranteed that HIV-1-infected cells express conserved epitopes on their surface in sufficient amounts for effective and timely killing by cytotoxic T cells, Sitaxentan i.e. before the infected cells produce HIV-1 progeny, which is key for the success of conserved T-cell

vaccines (Fig. 2). Both of these caveats are being investigated in the on-going clinical trials of the conserved vaccines by e.g. in vitro virus suppression assays utilising vaccine-induced T-cell effectors 21. The strategy for controlling HIV-1 by the use of conserved T-cell epitopes has been proposed on several occasions 22–24. However, an actual T-cell vaccine employing conserved regions (rather than epitopes) of HIV-1, thus preserving the natural epitope adjacent sequences and also the possibility of inducing responses to as yet unidentified epitopes, was first reported by Letourneau et al., who employed the 14 most conserved regions of the proteome as 27- to 128-amino acid-long consensus sequences alternating the four major main global clades A, B, C, and D 25. At about the same time, such an approach was theoretically proposed by Rolland et al., who suggested the use of 45 conserved elements (CEs) at least 8 amino acids long that fulfilled stringent conservation criteria 26.

Whilst these guidelines are targeted towards care at the terminal

Whilst these guidelines are targeted towards care at the terminal stage of disease, they do include a useful analgesic ladder. The guidelines in general are produced as easy to follow flow charts and cover symptoms and signs including constipation, pruritis, pain and dyspnoea. Some guidelines such as those covering fever, would not be

appropriate in most RSC patients as the only recommendation is for the use of paracetamol. In an actively managed RSC patient not yet approaching EOL, antibiotics are more likely to be the management choice. The St George’s Hospital web-site[3] also includes a section on palliative care drug guidelines. This has been Atezolizumab adapted from the Yorkshire Palliative Medicine Guidelines (2006) and gives comprehensive information about drug usage including dose and timing adjustments, elimination and other helpful

comments to guide the prescriber. There is also a useful powerpoint presentation from Dr F Brennan covering symptoms and the evidence for various treatments. In particular, this is helpful for conditions such as Restless Legs Syndrome and pruritis which are often very difficult to manage. In North America, the Mid-Atlantic Renal Coalition (MARC) and Kidney End of Life Coalition have developed a clinical algorithm to treat pain in dialysis patients. Whilst these clinical guidelines were developed to aid management of pain specifically in dialysis patients, they provide a useful review BI 6727 research buy of suitable analgesics and an analgesic ladder specifically adapted for patients with renal failure. Nociceptive and neuropathic pain is covered as well as the management of analgesia-associated side effects. Further dosage adjustments may be necessary for certain medications (e.g. Gabapentin) in patients choosing not to dialyse.

Buspirone HCl Some guidelines deal with how to manage discussions around the question of dialysing, others concern themselves with what is necessary for adequate service provision. In Australia and New Zealand, the CARI Guidelines include two sections of note – ‘Ethical Considerations’ and ‘Quality of Life’. The suggestions in the section ‘Ethical Considerations’, dealing with acceptance onto dialysis, are based on level III and IV evidence and are not protocols for management of people choosing a supportive care pathway. This paper does discuss the concept of ‘benefit’ to the patient. Trials of dialysis are also discussed where there is uncertainty about potential benefit from dialysis. It does not discuss the potential disadvantages of such a trial and what evidence may be available to support this approach. The section on ‘Quality of Life’ again deals with recommendations at a level III or IV only – no recommendations based on higher level evidence are possible.

Atherosclerotic renovascular disease (ARVD), long recognized as a

Atherosclerotic renovascular disease (ARVD), long recognized as an important cause of secondary hypertension, is increasingly identified

as a cause of chronic kidney disease (CKD) in our aging population. Despite an extensive literature, decisions regarding its investigation and treatment are challenging, with a paucity of firm evidence for even the most established indications to intervene. Frequently, ARVD is a silent condition intertwined with other atheromatous disease as part of a systemic vascular equivalent of the metabolic syndrome. A complex dynamic exists between intrinsic renal damage from microvascular disease and microemboli, hypertension, and resulting cardiac abnormalities. Atherosclerotic renal artery stenosis (RAS) describes the physical narrowing within the renal artery and is often an incidental finding. As will be discussed, the optimal treatment for Saracatinib mouse most such lesions is uncertain.1,2 As some patients present with renal artery occlusion it is more

accurate to use the term ARVD to describe overall patient populations with renal atheroma. Prior to the publication of Angioplasty and Stenting for Renal Artery Lesions (ASTRAL),3 the largest trial in ARVD to date, there had only been five small randomized control trials (RCT)4–8 assessing the value of revascularization therapy in ARVD. Despite the findings of ASTRAL and the other RCT, some questions are still unanswered with conclusions and debate drawn from subgroup analyses. Given many

cases are incidental findings or remain asymptomatic, Nutlin-3a clinical trial the true prevalence of ARVD is almost certainly underestimated. In the UK, ARVD is defined as the primary disease in 10.8% of incident dialysis patients aged over 65 years.2 In the general population, learn more a community based study using Doppler ultrasound found nearly 7% prevalence of significant AVRD in elderly subjects.9 Recent data in which patients presenting to the emergency room who were found to be hypertensive were screened for RAS found significant disease in over 8%.10 Claims data from a random sample of Medicare patients aged >65 years in the USA found the incidence of ARVD to be 3.7 per 1000 patient-years or 0.5% in the general adult population.11 Unsurprisingly given the systemic nature of vascular disease, patients already being investigated for disparate arterial disease have a higher incidence of incidental disease. Significant RAS is found in almost 40% of patients investigated for lower limb vascular disease or aortic disease and between 15% and 29% of patients undergoing diagnostic coronary angiography.12,13 The RAS is often bilateral. In 2439 patients undergoing coronary angiography, 19% were found to have evidence of RAS, in which 26% (5% overall) had bilateral disease.

The model is based on an extensive survey of the public literatur

The model is based on an extensive survey of the public literature and input from an independent scientific advisory board. It reproduces key disease features including activation and expansion of autoreactive lymphocytes in the pancreatic lymph nodes (PLNs), islet infiltration and β cell loss leading to hyperglycaemia. The model uses ordinary differential and algebraic equations to represent the pancreas and PLN as well as dynamic interactions of multiple cell types (e.g. dendritic cells, macrophages, CD4+ T lymphocytes, CD8+ T lymphocytes, regulatory T cells, β cells). The simulated features

of untreated pathogenesis and disease outcomes for multiple interventions compare favourably Selleckchem CH5424802 with published experimental data. Thus, a mathematical model reproducing type 1 diabetes pathophysiology in the NOD mouse, validated based on accurate reproduction of results from multiple

published interventions, is available for in silico hypothesis testing. Predictive biosimulation research evaluating therapeutic strategies and underlying biological mechanisms is intended to deprioritize hypotheses that see more impact disease outcome weakly and focus experimental research on hypotheses likely to provide insight into the disease and its treatment. While many therapeutic strategies have prevented or cured type 1 diabetes successfully in animal models such as the non-obese diabetic (NOD) mouse, all clinical trials to date have failed to do so in human subjects, suggesting that a more complex interpretation of the animal data may be warranted. In our previous evaluation of interventions attempting selleck chemical to modulate disease in the NOD mouse, we found several cases where disparate

responses had been observed following administration of a particular intervention [1]. Closer examination suggested that in some cases, dose, timing and treatment duration could theoretically account for discrepant efficacy observed within the NOD mouse model and/or between NOD versus human treatment results, underscoring their probable importance in identifying appropriate protocols for human clinical trials. We therefore maintain that an improved understanding of how protocol parameters impact treatment efficacy can be expected to improve fundamentally our interpretation of animal results and facilitate translational efforts. While theoretically desirable, it can be prohibitively expensive and time-consuming to optimize treatment protocols and fully explore treatment mechanisms of action in the laboratory. An alternative is to use physiologically based mathematical models to execute rapid, cost-efficient in silico analysis, resulting in testable predictions and recommendations for key corroborating experiments.

e to link the changes in gene expression to phenotypic changes a

e. to link the changes in gene expression to phenotypic changes and (1) to determine whether differential gene expression really results in an observable altered phenotype and (2) to determine whether this differential gene expression and the resulting phenotype are attributable to

the stress conditions applied. I wish to thank BOF-UGent, the Fund for Scientific Research-Flanders and Cystic Fibrosis Foundation Therapeutics Inc. for financial support. I also wish to thank colleagues and coworkers (past and present) for their collaboration and support. I apologize to the colleagues whose work I was not able to cite due to space constraints. “
“TNF is a pleiotropic cytokine with intriguing biphasic pro-inflammatory and anti-inflammatory effects. Our previous studies demonstrated that https://www.selleckchem.com/products/PD-0332991.html TNF up-regulated FoxP3 expression and activated and expanded CD4+FoxP3+ regulatory T cells (Tregs) via TNFR2. Furthermore, TNFR2-expressing learn more Tregs exhibited maximal suppressive activity. In this study, we show that TNF, in concert

with IL-2, preferentially up-regulated mRNA and surface expression of TNFR2, 4-1BB and OX40 on Tregs. Agonistic antibodies against 4-1BB and OX40 also induced the proliferation of suppressive Tregs. Thus, TNF amplifies its stimulatory effect on Tregs by inducing TNF receptor superfamily (TNFRSF) members. In addition, administration of neutralizing anti-TNF Ab blocked LPS-induced expansion of splenic Tregs and up-regulation of TNFR2, OX40 and 4-1BB receptors on Tregs in vivo, indicating that the expansion of Tregs expressing these co-stimulatory TNFRSF members in response to LPS is mediated by TNF. Altogether, our novel data indicate that TNF preferentially up-regulates TNFR2

on Tregs, and this is amplified by the stimulation of 4-1BB and OX40, resulting in the optimal activation of Tregs and augmented attenuation of excessive inflammatory responses. CD4+FoxP3+ regulatory T cells Phospholipase D1 (Tregs) comprise only a minor fraction (∼10%) of peripheral CD4+ T cells, but play a critical role in the establishment and maintenance of immunological tolerance to self-antigens as well as to foreign antigens 1, 2. Certain cytokine receptors preferentially expressed by Tregs not only serve as surface markers for the identification of Tregs but also promote the function of Tregs. CD25, the α chain of the IL-2 receptor, is the prototype of such cytokine receptors 1, 2. Our previous studies indicate that TNFR2 is an important cytokine receptor preferentially expressed by the highly suppressive human and mouse Tregs 3–5. TNFR2 is one of two receptors transducing the biological function of TNF, a pleiotropic cytokine that is a major participant in the initiation and orchestration of inflammation and immunity 6. TNFR2 expression is restricted to certain T-cell subpopulations 6, and acts as a co-stimulator for antigen-driven T-cell responses 7.

Tlr9−/− and Tlr5−/− deficient animals, however, show little diffe

Tlr9−/− and Tlr5−/− deficient animals, however, show little difference in Lp clearance compared to WT controls (unpublished observations) 7, 9. In addition, NAIP5 and NLRC4 limit growth of Legionella both in vitro and

in vivo through the detection of intracellular flagellin 3, 31. The mechanism of 5-Fluoracil delayed Legionella clearance in Nod1−/− infected lung may be due to multiple factors. One possible explanation could be that Nod1−/− animals have impaired early recruitment of PMN to the alveolar space leading to later impaired Lp phagocytic clearance. Alternatively, NOD1 may either directly or indirectly regulate replication of Lp in macrophages. Studies in bone marrow derived macrophages suggest, however, that NOD1 does not regulate Lp replication through direct detection 23. Interestingly

RIP2-deficient animals show little difference in organism clearance, suggesting the mechanism of increased CFU seen in Nod1−/− animals may be due to a RIP2-independent mechanism 11. Whether the mechanism of Lp clearance by NOD1 is due to increased phagocytic killing versus check details impaired replication in cells containing NOD1 is currently unknown. Recruitment of neutrophils to the lung may be important in clearance of Legionella and help to develop a protective Th1 response to the pathogen 32. In addition, inhibition of chemotactic receptors important for neutrophil recruitment has been associated with enhance mortality of mice infected with Lp 33. Impaired early neutrophil recruitment was previously observed in the lungs of Myd88−/−, and to a lesser extent in Tlr2−/− and Tlr5−/− deficient animals 9, 10. In our model, we demonstrated that decreased PMN recruitment and impaired Lp clearance in the Nod1−/− animals was associated DCLK1 with decreased early IL-1β, and KC levels in the lungs of Nod1−/− mice as compared to WT controls. Impaired production of KC (CXCL1) may account for the impaired PMN

recruitment seen in Nod1−/− mice 34. Also, NOD may be important in regulation of IL-1β not only by inducing pro-IL-1β transcription but also by activating caspase-1 directly to cleave pro-IL-1β to the active form 35, 36. At 24 h, we also observed increased IL-6 levels and a trend toward increased TNFα in the Nod1−/− lung in comparison to WT mice. These data suggest that NOD1 regulates suppression of later pro-inflammatory cytokine signaling. Together, our data suggest that NOD1 detection of Lp contributes to early cytokine and chemokine responses, early recruitment of PMN, and effective clearance of Lp from the lungs. While NOD2 deficiency was not associated with impaired bacterial clearance in our study, alterations in inflammatory cell recruitment and cytokine responses were seen in Nod2−/− compared to WT.

Pre-warmed PBS was slowly inflated into the lungs and withdrawn

Pre-warmed PBS was slowly inflated into the lungs and withdrawn. The pooled sera were then centrifuged, and the supernatants were maintained at −70°C until use for ELISA. The cell pellets were resuspended and washed twice in PBS. The total cell numbers

were counted using a haemocytometer after RBC lysis using ACK lysis buffer (Invitrogen, Carlsbad, CA, USA). The BALF cell smears were prepared using a Cytospin apparatus (Hanil Science industrial Co., Gyeuangku, Inchun, Korea). The smears were then stained with Diff-Quik solution (Dade Diagnostics of Puerto Rico. Inc., Aguada, Puerto Rico) to determine the cell differentials, in accordance with RXDX-106 conventional Saracatinib mouse morphological criteria. The results were calculated after three consecutive experiments. All animal studies were approved by the Animal Care and Use Committee of Pusan National University. After the mice were killed, the spleen, lung and lung draining lymph nodes were disrupted and treated with ACK hypotonic lysis solution (Sigma-Aldrich) for 2 min at room temperature for RBCs (red blood cells) lysis. After RBC lysis, the remaining cells were filtered with 100 μm mesh (Small Parts, Inc. Miramar, USA), and the cells were plated in 48 well plates as 5 × 106 cells/mL in RPMI 1640 with 10% foetal bovine serum and penicillin/streptomycin. For the CD3 stimulation

experiments, 0·5 μg/mL of CD3 antibody

(BD Pharmingen™, San Diego, CA, USA) was added to cell-plated wells. Plated cells were incubated for 72 h at 37°C in an atmosphere of 5% CO2. Following incubation, the culture media was harvested and stored at −20°C. The quantities of IL-4, IL-5, IL-13, IL-22, IL-17 and IL-17F in the BALF were determined using an enzyme Meloxicam immunoassay, as previously described (22). Mouse lung epithelial cells (MLE12) were obtained from the American Type Culture Collection. Primary lung epithelial cells were isolated from C57BL/6 mice as described previously (22,24), after depletion with anti-CD32/CD16 and anti-CD45 antibodies (Miltenyi Biotec, Bergisch Gladbach, Germany). The cells were then treated with 0·01–1 μg/mL ES proteins. After 2 h of stimulation, the cells were collected and lysed, and the total RNA was extracted. Mouse embryonic fibroblast (MEF) cells were isolated from wild-type (WT) mouse, toll-interleukin 1 receptor (TIR) domain-containing adapter-inducing interferon-β (TRIF) knock out (KO), and Myeloid differentiation primary response gene (MyD) 88/TIR-domain-containing adaptor protein (TIRAP) KO C57BL/6 mouse foetuses 10 days after fertilization. Total RNA extracted using TRIzol reagent (Invitrogen Life Technologies, Milan, Italy) was used to generate cDNA using oligo-dT, random hexamers and SuperScript RT II (Invitrogen, Carlsbad, CA, USA).