Briefly, PBMC, 1 × 105 to 2 × 105, were cultured for 20 hr in the presence or absence of indicated peptides with a final concentration of 10 μg/ml in an ELISPOT plate. To block HLA-II-restricted responses, 10 μg/ml anti-pan HLA class II monoclonal antibody IVA12 [American Type Culture Collection (ATCC), Rockville, MD], anti-DP (B7/21; Abcam, Cambridge, MA, USA), selleck kinase inhibitor anti-DQ (SPV-L3, IgG2a, a kind gift from Dr H. Spits, DNAX, CA) and anti-DR (L243, ATCC) was added,
respectively; and to block HLA-I restricted responses anti-HLA-I antibody W6/32 ascites (ATCC) was added at a final dilution of 1 : 40 for 30 min before adding peptides in ELISPOT assays. As positive controls, cells were exposed to 10 μg/ml phytohaemagglutinin (Sigma-Aldrich,
Poole, Dorset, UK). The PBMC were also depleted of CD4+ or CD8+ T cells and cultured in the presence or absence of indicated peptides in ELISPOT plates to confirm the dependence of T-cell subsets responsible for peptide-induced responses. Peripheral BAY 57-1293 ic50 blood mononuclear cells restimulated for 10 days with peptide were harvested, washed and incubated with or without the relevant peptide at 1 μm for 4 hr at 37°. Brefeldin A (Sigma-Aldrich) was present for the last 3 hr of incubation. The cells were subsequently stained according to the ‘FastImmune’ protocol (Pharmingen, San Diego, CA, USA) with CD3-allophycocyanin-Cychrome7, CD4-Peridinin chlorophyll protein, CD8-allophycocyanin, CD69-phycoerythrin, and IFN-γ-fluorescein isothiocyanate. The stained cells were analysed on a FACS Aria II. Student’s t-test was used to analyse the quantitative differences between the experimental wells and control Low-density-lipoprotein receptor kinase in ELISPOT assays. A P-value below 0·05 was considered significant. The complete sequenced genome of M. tuberculosis was deciphered in 199834,35 and revealed the presence
of 3985 open reading frames, which are all potential targets for a TB vaccine. The search for CTL epitopes specific for M. tuberculosis were restricted to a subset of 24 M. tuberculosis proteins against which ex vivo reactivity had earlier been found by an IFN-γ ELISPOT assay using pools. Here, a peptide library representing 10% of the M. tuberculosis genome was screened directly for CD8+ T-cell responses ex vivo by IFN-γ ELISPOT in donors with LTBI (positive CD4+ T-cell response to either ESAT-6 or CFP-10; D. M. Lewinsohn, unpublished data). The criteria for including the proteins for CTL epitope prediction were a positive IFN-γ ELISPOT response detected in more than two donors or a positive IFN-γ ELISPOT response detected in two donors, where at least one of the donors had an IFN-γ response of >200 spot-forming cells per 106 PBMC. To identify antigenic M. tuberculosis CTL epitopes, a bioinformatics method (NetCTL) was employed to predict epitopes restricted to at least one of the 12 HLA-I supertypes.18 Based on the predictions, 206 potential CTL epitopes were synthesized.