It is therefore possible that other resistance mechanisms, such a

It is therefore possible that other resistance mechanisms, such as ParE polymorphisms, other horizontally acquired resistance genes (such as oqxAB and aac(6 ‘ )-Ib for example), over-active efflux, or even novel mechanisms are present in some of the isolates. Resistance patterns in pathogens often mirror those in commensals. This is borne out by our recent documentation of quinolone resistance in Vibrio cholerae isolates recovered in the same time frame as the E. coli strains presented in this report

[21]. Fifteen of the 40 QREC isolates identified in this study belonged to ST10, Volasertib order or were single- or double-locus variants of this ST, pointing to the possibility of clonal expansion.

ST10-complex strains were isolated in all three years and therefore over-representation of these STs in our sample cannot be explained GSK621 supplier by learn more short-term, localized clustering. There are four major E. coli phylogenetic clades: ECOR A, B1, B2 and D. Few studies have looked at the geographical variance in the distribution of these groups but overall, QREC from Ghana were predominantly drawn from ECOR group A. Of the STs identified in this study that are classified into ECOR clades at the E. coli MLST database, ST10 complex (14 isolates) belong to ECOR group A, ST131 (1 isolate) to ECOR B2, STs101 and 410 (3 isolates) to ECOR B1 and STs 156, 206 and 210 (4 isolates) are hybrids of ECOR A and B1, that is AxB1. Available PAK5 data appear to suggest that ECOR A strains are highly prevalent in Africa, compared to some other world regions [22]. However, when we compared the sequence types of quinolone-resistant and -susceptible strains from Ghana only, we still found that resistant strains were over-represented in the ST10 complex. Pandemic clonal expansion of some QREC lineages has been reported in the literature [23–28]. For example, ST131 is a globally disseminated multi-resistant clone and was detected once among the QREC in this study. Recent reports suggest

that isolates from Europe and North America that belong to ST10- or ST131- clonal complexes may be less likely to carry virulence factors for invasive disease, but more likely to be fluoroquinolone resistant [24–28]. However it is equally likely that mutations to fluoroquinolone resistance are more likely to be stably inherited in a specific genetic background. Our own data also appear to suggest that, although horizontally acquired, qnrS1 is associated with ST10 complex. A recent paper by Davidson et al suggests that the antimalarial chloroquine may select for fluoroquinolone-resistant fecal bacteria in malaria endemic areas and proposes that chloroquine-mediated selection accounts for high levels of QREC in fecal flora in villages in South America [29].

From Figure  7a, the resistances of Hy-rGO-based sensors could be

From Figure  7a, the resistances of Hy-rGO-based sensors could be calculated to be 12.3, 14.5, and 89.3 KΩ, respectively, when the assembly concentrations of GO were 1, 0.5, and 0.25 mg/mL. When the concentration was above 0.5 mg/mL, the resistances Batimastat order of the sensing devices had little changes. However, when the assembly concentration of GO solution decreased to 0.25 mg/mL, the resistance of the resultant device increased greatly. This might be due to the crack of the rGO sheets

during the reduction process, which inevitably destroyed the electrical circuit of the device. Similar situations occurred for Py-rGO devices, as shown in Figure  7b, the resistances of the devices were 13.5 and 28.2 KΩ respectively when the assembly concentrations of GO solution were 1 and 0.5 mg/mL. Further decrease of GO concentration to 0.25 mg/mL resulted in rapid increase of resistance of the resultant Py-rGO device (8.3 MΩ). This value was much higher than the resistances of Hy-rGO-based devices. This might be ascribed to the following two reasons: (1) hydrazine was a stronger reducing agent during the reduction process, and as a result, the resistances of the resultant Hy-rGO devices were generally lower than those of Py-rGO devices, and this was also in agreement with the results as shown in Figure  7a,b; (2) much more cracks existed during Selleckchem AG-120 the reduction

process when pyrrole was used as a reducing agent. This could be proved by the SEM images as shown in Figure  5e,f; comparing with Hy-rGO devices (as shown in Figure  4e, f), much more cracks appeared, which had great effects on the final resistances of the resultant rGO devices. Figure 7 The comparison of sensing properties of devices based on assembled rGO sheets. I-V curves of sensing devices based on Hy-rGO (a) and Py-rGO (b) fabricated with GO assembly concentration

at 1, 0.5, and 0.25 mg/mL. Plot of normalized resistance change versus time for the sensing devices based on Hy-rGO (c) and Py-rGO (d) fabricated with GO assembly concentration at 1, 0.5, and 0.25 mg/mL (the concentration of NH3 gas is 50 ppm). NH3, a toxic gas, is very harmful to human health [47], and it is import to develop ammonia gas sensors and monitor for NH3 leaks. Carnitine palmitoyltransferase II Hence, we used NH3 here as analyte in order to probe the sensing properties of the resultant Hy-rGO- and Py-rGO-based sensors. All of the sensors based on Hy-rGO and Py-rGO, which were fabricated with different assembly concentrations of GO solution, were tested toward 50 ppm NH3 GDC-0068 balanced in synthetic air. The sensor response (R) toward NH3 gas was calculated according to the following equation: (2) where R 0 is the resistance of rGO device before the exposure to NH3 gas, and R gas is the resistance of rGO device in the NH3/air mixed gas [29].

Disappearance of aHIF induction under hypoxia was only confirmed

Disappearance of aHIF induction under hypoxia was only confirmed in the cell lines expressing high levels of HIF2a protein SC79 and low amounts of HIF1a protein. In conclusion, we have observed that, in the cell lines studied, a high HIF2a protein expression could be correlated

with a decrease of HIF1a expression and a loss of aHIF induction under hypoxia. Experiments are currently in progress to elucidate molecular mechanisms explaining these observations. Poster No. 33 Elevated Claudin-2 Expression is Associated with Breast Cancer Metastasis to the Liver Sébastien Tabariès 1,6 , Zhifeng Dong1,6, François Pépin2,3,6, Véronique Ouellet1,6, Atilla Omeroglu4, Mazen Hassanain5, Peter Metrakos5, Michael Hallett3,6, Peter Siegel1,2,6 1 Department of Medicine, McGill University, Montreal, QC, Canada, 2 Department of Biochemistry, McGill University, Montreal, QC, Canada, 3 McGill Centre for Bioinformatics, McGill University, Montreal,

QC, Canada, 4 Department of Pathology, McGill University, Royal Victoria Hospital, Montreal, QC, Canada, 5 Department of Surgery, McGill University, Royal Victoria Hospital, Montreal, QC, Canada, 6 Goodman Cancer SBI-0206965 supplier Centre, McGill University, Montreal, QC, Canada Breast cancer is the most commonly diagnosed cancer affecting Canadian women and is the second leading cause of cancer deaths in these patients. The acquisition of metastatic abilities by breast cancer cells is the most deadly aspect of disease progression. Upon dissemination 17-DMAG (Alvespimycin) HCl from the primary tumor, breast cancer cells display preferences for specific metastatic

sites. The liver represents the third most frequent site for breast cancer metastasis, following the bone and lung. Despite the evidence that hepatic metastases are associated with poor clinical outcome in breast cancer patients, little is known about the molecular mechanisms governing the spread and growth of breast cancer cells in the liver. We have utilized 4 T1 breast cancer cells to identify genes that confer the ability of breast cancer cells to metastasize to the liver. In vivo selection of parental cells resulted in the isolation of independent, aggressively liver metastatic breast cancer populations. The expression of genes encoding tight-junctional proteins were elevated (Claudin-2) or lost (Claudin-3, -4, -5 and -7) in highly liver aggressive in vivo selected cell populations. We demonstrate that loss of claudin expression, in conjunction with high levels of Claudin-2, is associated with migratory and invasive phenotypes of breast cancer cells. Furthermore, overexpression of Claudin-2 is sufficient to promote the ability of breast cancer cells to colonize and grow out in the liver. Finally, examination of clinical samples revealed that Claudin-2 expression is evident in liver metastases from Rapamycin patients with breast cancer.

Our criteria

Our criteria GSK458 order for active compounds to be further investigated was arbitrarily set as Δ Fn = 50-100% quenching for iron uptake inhibitors and < -50% quenching for iron uptake facilitators. 55Fe uptake into K562 cells 3 × 105 K562 cells in 300 μl NaCl-Hepes-0.1% BSA were incubated for 30 min with test compound at various concentrations as indicated in a humidified 37°C incubator with 5% CO2. A mixture of 55Fe- and AA was then added for a final concentration of 1 μM 55Fe -1 mM AA and the cells incubated for an additional 60 min. The reaction was stopped by the addition of ice-cold quench Ralimetinib solubility dmso buffer (NaCl-Hepes

with 2 mM EDTA) followed by extensive washing of the cells which were then dispersed in scintillation fluid and 55Fe Vactosertib nmr radioactivity determined in a Tri-carb 2900 TR liquid scintillation analyzer (Packard BioScience Company, Meriden, CT). Preparation of medium containing 10%

FCS with iron-saturated Tf Iron on the Tf in FCS was removed from the Tf by lowering the pH to 4.5 followed by dialysis against 0.1 M citrate buffer, pH 4.5, in the presence of Chelex for 16 hours, and dialyzed again against HEPES buffered saline, pH 7.4, in the presence of Chelex. FeNTA (1:2 molar ratio for Fe: NTA) was then added to the now iron-free FCS at 1 mM final concentration followed by extensive dialysis against HEPES buffered saline, pH 7.4. The resulted FCS containing iron-saturated Tf was added into RPMI1640 to make the medium containing 10% iron-saturated FCS. Western blot analysis of ferritin, TfR, and HIF-1α and -2α PC-3 cells were plated into 6-well plates at cell

density of 5 × 105 cells/well for overnight attachment before addition of test compound or vehicle control for 16 hours. The cells were until then lysed with RIPA buffer (50 mM Tris-HCl, 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM EDTA, pH 7.4) and the lysates separated on SDS-PAGE with subsequent transfer to nitrocellulose for western blot analysis using the following antibodies: mouse anti-human ferritin-heavy chain, mouse anti-human TfR, anti-HIF-1α or -2α, and rabbit anti-human β-actin. Results were quantitated by densitometry and relative densitometric units expressed as the ratio of protein of interest to actin. 55Fe uptake and transport in Caco2 cells Caco2 cells were seeded in 6.5 mm bicameral chambers in 24-well plates, grown in 10% FCS-minimum essential medium for ~2 week to reach a transepithelial electrical resistance (TEER) of 250 .cm2. The cells were incubated in serum-free DMEM with 0.1% BSA overnight and the inserts then transferred to fresh 24-well plates with the basal chambers containing 700 μL of 20 μM Apo-Tf in DMEM. Test compound at concentrations of 0-100 μM in a total volume of 150 μl were added to the top chamber, incubated for 60 min at 37°C, 5% CO2 incubator, followed by the addition of 55Fe to the top chamber at a final concentration of 0.125 μM 55Fe in 1 mM AA.

(1) (2) (3) In practice, we observed a low biomass production (mg

(1) (2) (3) In practice, we observed a low biomass production (mg dry weight/cm2) on the medium with 3% lactate, while the see more produced biomass on media containing 3% starch with or without additional 3% lactate was not significantly different. Although the presence of starch was important for both growth and FB2 production of A. niger,

addition of either 3% maltose or 3% xylose to medium containing 3% starch did not further increase the FB2 production. The effect C188-9 ic50 of added lactate can consequently not be a simple result of a double amount of carbon source. Exploring the proteome Proteome analysis was conducted in order to identify proteins for which expression levels were altered during growth of A. niger on media

containing 3% starch (S), 3% starch + 3% lactate (SL) and 3% lactate (L), and if possible relate the identified proteins to the influence on FB2 production. The samples for protein extraction were taken 60 hours after inoculation as the FB2 production rate was estimated to be highest at this time. In order to document FB2 synthesis, FB2 production was measured after 58 hours and 66 hours. The FB2 synthesis rate was calculated to be (average ± 95% confidence limits, n = 6) 280 ± 140 ng/cm2/h on S, 520 ± 90 ng/cm2/h on SL and 10 ± 60 ng/cm2/h on L. Biomass (dry weight) was measured after 62 hours and was (average ± standard deviations, n = 3) 6.2 ± 0.4 mg/cm2 on S, 6.5 ± 1.0 mg/cm2 on SL and 1.3 ± 0.3 mg/cm2 on L. Extracted proteins were separated by two-dimensional Selleckchem I BET 762 polyacrylamide gel electrophoresis (Figure 4). On 18 gels, representing Adenosine 2 biological replicates and 3 technical replicates of A. niger cultures on each of the media S, SL and L, we detected 536-721 spots. With regard to the size of gels

and amount of loaded protein, this was comparable to detected spots in other proteome studies of intracellular proteins in Aspergillus [33, 34]. One protein was present at very high levels on the media containing starch, which was identified as glucoamylase [Swiss-Prot: P69328]. Jorgensen et al. [35] did similarly find this protein to have the highest transcript level of all genes in a transcriptome analysis of A. niger on maltose. Because of the volume and diffusion of this spot, the area containing this spot was excluded from the data analysis. About 80% of the spots were matched to spots on a reference gel containing a mixture of all samples. Thus, the total dataset for further analysis consisted of 649 matched spots (see Additional file 1). Figure 4 Example of representative 2D PAGE gels. 2D PAGE gels of proteins from A. niger IBT 28144 after 60 hours growth on media containing 3% starch (top), 3% starch + 3% lactate (middle) and 3% lactate (bottom). Large differences in the proteome of A. niger when grown on S, SL and L were evident.

In other tumor models, antiangiogenic agents have failed to norma

In other tumor models, antiangiogenic agents have failed to normalize the vasculature and have induced hypoxia [10, 11]. In the current study, sunitinib treatment reduced microvascular density, increased hypoxic fraction, induced necrosis, and did not alter IFP. Consequently, the treatment schedule applied here resulted in changes in the tumor microenvironment that argue against treatment-induced normalization. This observation is in line with our previous experience with A-07 and R-18 human melanoma xenografts growing in dorsal window chambers [11]. PD-332991 In that study, tumors were treated with two different

sunitinib doses and the Z-VAD-FMK molecular weight effect was assessed multiple times during the treatment period. The treatments did not improve vascular function at any time point, suggesting that sunitinib cannot normalize tumor vasculature in these melanoma xenografts. In tumors where antiangiogenic treatment induces hypoxia, neoadjuvant antiangiogenic therapy is expected to reduce the effect of radiation and chemotherapy [7, 8]. In contrast, neoadjuvant antiangiogenic therapy has been shown to enhance the effect of radiation or chemotherapy in preclinical tumors where antiangiogenic treatment normalizes the vasculature and the microenvironment [2, 3]. The current study suggests that DW-MRI and DCE-MRI can be used to identify tumors where antiangiogenic treatment does not normalize the microenvironment. These tumors

APR-246 purchase respond to antiangiogenic treatment with reduced K trans and increased ADC. Interestingly, increased K trans and reduced ADC have been reported in tumors where antiangiogenic treatment has normalized the vasculature and the microenvironment [14, 32]. Vascular normalization is a transient effect because tumors can switch to other angiogenesis pathways and become resistant to antiangiogenic agents. The duration of improved tumor oxygenation is also expected to be limited because the beneficial effects of vascular normalization may be balanced by severe vascular regression after prolonged exposure to antiangiogenic agents [31]. Winkler et al. demonstrated that VEGFR-2 blockade enhanced

the effect of radiation when the tumors were irradiated during the time window when the antiangiogenic agent normalized the vasculature and improved oxygenation [3]. They also showed that VEGFR-2 blockade did not enhance the effect of oxyclozanide radiation when tumors were irradiated before or after this time window, suggesting that the timing of combination therapies may be crucial to achieve maximal antitumor effect. Previous studies suggest that DW-MRI and DCE-MRI are sensitive to vascular normalization [14, 32], and the current study suggests that these techniques are also sensitive to microenvironmental effects that indicate no normalization. Taken together, these studies suggest that DW-MRI and DCE-MRI may be used to monitor the effect of antiangiogenic treatment to identify a potential normalization window.

Of the cases

Of the cases included

in this study, 76% (i.e. 35 cases) were early stage disease (i.e. Stages I and II). The median CA125 plasma concentrations were 13 U/ml (range 3 – 84) for controls and 502 U/ml (5 – 10,209) for cases. In 3 controls, CA125 concentration was ≥ 35 U/ml. In 6 cases, CA125 concentration was < 35 U/ml. At a threshold of 35 U/ml, the sensitivity and specificity of CA125 were 87.0 and 95.1%, respectively. Variation with Disease State, Stage and Tumor Type The variation in plasma analyte concentrations for control and case cohorts is presented in Figure 1. Median plasma concentrations of immunoreactive Trichostatin A MDK, AGR2 and CA125 were significantly greater in the case cohort (909 pg/ml, 765 pg/ml and 502 U/ml, respectively n = 46) than in the control (383 pg/ml, 188 pg/ml MEK162 and 13 U/ml, respectively n = 61)

cohort (p < 0.001, as assessed by Mann Whitney tests). Within control or case cohorts, plasma concentrations of AGR2 displayed no significant correlations with either CA125 or midkine concentrations (as assessed by Spearman's correlation, p > 0.05). Within the case cohort, MDK plasma concentrations significantly correlated with CA125 concentrations (ρ = 0.383, p < 0.01). Data were further analysed with respect to tumor type and Stage (Table 3). No statistically significant effects of either tumor type or stage on biomarker plasma concentrations were identified (Kruskal-Wallis one-way analysis of variance, p > 0.05). Figure 1 Plasma biomarker concentrations. The median plasma concentration within each group (normal women (controls) n = 61 and women with ovarian PS 341 cancer (cases) n = 46) is represented by the horizontal line. Biomarker concentrations were

significantly greater in case cohorts (solid symbols) when compared to their respective control cohort (open symbols) (p < 0.001, Mann Whitney tests). Data are presented as log (plasma concentration). CA125 as U/ml; and MDK and AGR2 as pg/ml. Table 3 Case cohort variation in plasma analyte concentration by stage of disease and tumor type, as assessed by Kruskal-Wallis One Montelukast Sodium Way Analysis of Variance (Stage and Tumor Type). Analyte Stage n = 45# (p) Tumor Type n = 43† (p) MDK 0.722 0.839 AGR2 0.776 0.334 CA125 0.524 0.214 # 1 sample was unstaged † 3 samples were not typed Receiver Operator Characteristic Curve Analysis and Multi-analyte Modelling ROC curves were generated for each individual analyte. The area under the curve (AUC) for MDK, AGR2 and CA125 was: 0.753 ± 0.049; 0.768 ± 0.048; 0.934 ± 0.027, respectively (AUC ± SEM). There was no significant difference between the AUC for midkine and AGR2. The AUC for CA125 was significantly greater than that for both midkine and AGR2 (p < 0.001, Table 4). Table 4 Comparison of AUC for MDK, AGR2, CA125 and multi-analyte panel Data represent AUC ± standard errors (SEM). Analyte AUC ± SEM p CA125 0.934 ± 0.027   MDK 0.753 ± 0.049 < 0.001 AGR2 0.768 ± 0.048 = 0.001 Multi-analyte Algorithm 0.988 ± 0.011 = 0.

The plasmids expressing the different coloured AFPs were introduc

The plasmids expressing the FRAX597 solubility dmso different coloured AFPs were introduced into P. fluorescens by electroporation according to previous protocols [15]. The colony variants (WS and SCV) were derived from the Δ gacS strain which produces phenotypic variants when exposed to heavy metal stress [2]. Introduction of the plasmids had no observable effects on colony morphology. Biofilms were cultured in LB using the Calgary Biofilm Device (CBD) [16, 17], with shaking at 150 rpm, at 30℃ and approximately 95% relative humidity. A 1:30 dilution of a 1.0 McFarland standard

was prepared for each individual strain and the CBD was inoculated with either the individual strain or a 1:1 mixture of the two or three strains being co-cultured and then grown for the indicated time prior to imaging. Due to the extended growth times for this experiment (up to 96 h) viable cell counts AZD1480 cost could not be obtained as the P. fluorescens variants grow very thick biofilms that could not be entirely removed by sonication. No new phenotypes were observed

Dibutyryl-cAMP supplier after 96 h of growth with any of the strains. Table 1 Strains and plasmids used in this study Strain or plasmid Description Source P. fluorescens CHA0 Wild-type strain [18] P. fluorescens CHA19 Contains a marker-less deletion of the gacS coding region [18] P. fluorescens SCV Small Colony Variant derived from the CHA19 strain [2] P. fluorescens WS Wrinkly Spreader derived from the CHA19 strain [2] pME6010 Rhizosphere stable plasmid, does not require antibiotic selection in P. fluorescens [19] pMP4655 pME6010 containing the coding sequence of enhanced GFP with the lac promoter [13] pMP4641 pME6010 containing the coding sequence of enhanced CFP PLEKHM2 with the lac promoter [13] pMP4658 pME6010 containing the coding sequence

of enhanced YFP with the lac promoter [13] pMP4662 pME6010 containing the coding sequence of dsRed with the lac promoter [13] Microscopy and biofilm quantification Microscopy was performed according the protocols outlined previously [20]. The pegs were examined using a Leica DM IRE2 spectral confocal and multiphoton microscope with a Leica TCS SP2 acoustic optical beam splitter (AOBS) (Leica Microsystems). A 63 × water immersion objective used for all the imaging and the image capture was performed using Leica Confocal Software Lite (LCS Lite, Leica Microsystems). Imaging of the biofilms expressing the AFPs were obtained by breaking off a peg of the CBD and placing it on a coverslip with a drop of saline. Excitation/emission parameters for each of the AFPs were 488/500−600 for GFP, 514/525−600 for YFP, 458/465−600 for CFP, and 543/55−700 for dsRed. To reduce cross-talk between the different AFPs, images with more than one AFP were acquired sequentially by frame so only one AFP was being imaged at a time.

Surgery 1973, 73:936 PubMed 23 Lorea P, Baeten Y, Chahidi N, Fra

Surgery 1973, 73:936.PubMed 23. Lorea P, Baeten Y, Chahidi N, Franck D, Moermans JP: A severe complication of muscle transfer: clostridial myonecrosis. Ann Chir Plast Esthet 2004, 49:32–5.PubMedCrossRef 24. McNae J: An unusual case of Clostridium welchii infection. J Bone Joint Surg Br 1966, 48:512–3.PubMed Competing interests The authors declare that they have no competing interests. Authors’ contributions IA and

AT had the original idea and GSK461364 manufacturer drafted the manuscript. PK and KL drafted, reviewed, finalized and revised the manuscript. GK and JK https://www.selleckchem.com/products/chir-98014.html searched the literature and prepared the figures. All authors read and approved the final manuscript.”
“Background Multiple endocrine neoplasia 2A (MEN2A) is a rare autosomal dominant syndrome caused by missense mutations in the RET proto-oncogene associated with medullary thyroid cancer, pheochromocytoma and hyperparathyroidism. Pheochromocytoma is a rare catecholamine-secreting tumor of the adrenal glands most often presenting with the characteristic symptoms of paroxysmal hypertension, palpitations, diaphoresis, and headache. Acute onset

abdominal pain and nausea may be the only presenting symptoms of spontaneous intra-abdominal hemorrhage, a rare and highly Lenvatinib lethal complication. We present a case of spontaneous intra-abdominal hemorrhage secondary to a ruptured pheochromocytoma, subsequent management, and a review of the literature. Case Presentation M.J., a 38-year-old man developed sudden severe abdominal pain, nausea, and vomiting after shoveling snow. Prior to this event, he denies having had any episodes of hypertension, tachycardia or

diaphoresis, Fenbendazole although several months prior he was diagnosed with essential hypertension and was started on lisinopril. In addition, he denied any recent abdominal or flank trauma. Of note, his past medical history is significant for a diagnosis of MEN2A which was made at the age of 18 months, and a prophylactic total thyroidectomy at age 10 secondary to elevated serum calcitonin levels. Since that time he has had no further follow-up, although of his two children, his daughter has been diagnosed with MEN2A and undergone a prophylactic total thyroidectomy 2 years prior to this event. On arrival, paramedics found him near syncopal and diaphoretic with a heart rate of 180 bpm and systolic blood pressure of 64 mmHg. Fluid resuscitation was initiated and the patient was taken to an outside hospital. Initial evaluation at the local level II trauma center was notable for a heart rate of 150 bpm, systolic blood pressure of 70 mmHg, diffuse peritoneal signs, a hematocrit of 34%, INR of 1.0 and PTT of 30.4. Following resuscitation with additional crystalloid and 2 units of packed red blood cells (pRBC), his hematocrit was 34%, INR 2.4 and PTT 66.2. A non-contrast abdominal computed tomogram revealed bilateral adrenal masses and a large amount of intra and retroperitoneal hemorrhage (Figure 1).

While the number of direct comparisons was small (n = 8), the fac

While the number of direct comparisons was small (n = 8), the fact that we found a significant decrease in species richness in primary forest to plantation transitions, whether or not an intermediate land use existed, suggests that plantations do not function to restore biodiversity to levels www.selleckchem.com/products/Everolimus(RAD001).html approaching that of primary forests on sites previously covered with Enzalutamide solubility dmso primary forest regardless of the intermediate use, but the plantations could be considered to restore biodiversity compared to the intermediate land use. Lower levels of species richness in plantations compared to primary forests is likely due, in part, to the high level of structural

complexity in natural forests that is required for seed germination in some plant species, particularly late seral and animal dispersed species (Lindenmayer and Hobbs 2004; Carnus et al. 2006; Paritsis and Aizen 2008). Lower diversity in plantations

may also be due to the paucity of seed sources (Gonzales and Nakashizuka 2010) and by changes in decomposition rates and litter fall with plantation establishment (Barlow et al. 2007b). In general, plantations contain a subset of primary forest species (FAO 2006), with lower levels of diversity and richness (Pomeroy and Dranzoa 1997; Fahy and Gormally 1998; Yirdaw 2001), but may be dependant upon adjacent or nearby forests for regeneration (Paritsis and Aizen 2008; Onaindia and Mitxelena 2009). As indicated by our results and discussed below, plantations (particularly young plantations) also tend to favor establishment AMG510 supplier of ruderal or exotic species over large, gravity dispersed or late seral species, leading to a change in species composition often not reflected in changes in overall species richness (Ito et al. 2004; Paritsis and Aizen 2008). Given that approximately half of plantations are established through conversion of natural forests, it is clear why many environmental groups rally against plantation forestry (Hartley 2002; Brockerhoff et al. 2008). While plantations represent a proximate driver for a small percentage Phosphoglycerate kinase of deforestation (7%),

they still constitute an important threat to native flora and fauna (FAO 2001). Although plantations may represent a “lesser evil” relative to other more intensive land uses, it is clear from a biodiversity perspective that primary forests (and other non-forested natural lands) should not be converted to plantations (Brockerhoff et al. 2008). Variable impacts on biodiversity: secondary forest and degraded and exotic pasture to plantation conversions Although species richness significantly increased in the secondary forest to plantation category, the diversity of results among case studies reflects the varied outcomes in studies quantifying biodiversity in plantations compared to secondary forests (Hartley 2002).